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We present a no_ el computational method for automatic assignment of protein do-
mains from stru_ tural data. At the core of our algorithm lies a recently proposed

clustering techni tue that has been very successful for image-partitioning applica-

tions. This grai.h-theory based clustering method uses the notion of a normal-
ized cut to parti_ ion an undirected graph into its strongly-connected components.
Computer imply, nentation of our method tested on the standard comparison set

of proteins from the literature shows a high success rate (84%), better than most
existing alternat yes. In addition, several other features of our algorithm, such as
reliance on few _djustable parameters, linear run-time with respect to the size of

the protein and educed complexity compared to other graph-theory based algo-
rithms, would m _.k(_it an attractive tool for structural biologists.

1 Introduction

Understanding th, biological functions of proteins is one of the major chal-

lenges of the post g(_nomic era 1,2,3,4,5 The task would be vastly simplified,

if the correlation ] etween protein structures and sequences is properly under-

stood, because the three-dimensional (3D) shapes of proteins may provide vital

clues about their functions. An important lesson learned from research on pro-

tein structures is t hat the number of evolutionarily distinct proteins is finite.

Families of evoluti,marily related proteins share the same folding architecture.

It is estimated tha: the total number of such folding architectures is of the or-

der of thousands 1 which is much smaller than the total protein space. Some

of these proteins c.m be further decomposed into domains, broadly defined as

compact sub-stru(' ures in the 3D structure of a protein 6,7,s. Some domains

can carry out spe_ ific functions and also fold autonomously 10. Due to such

unique properties, domains are believed to serve as more fundamental units

of evolution and i_ many ways more basic blocks of the protein universe 9.

Therefore, catalogin_ domains will enrich the database of protein domain fam-



(a)T-CellSurL_ceGlycoprotein
(PDBcode::;CD4)contains
twodomains,a._it isclearlyvis-
ibleinthefigur_.

(b)W matrix of protein 3CD4.

Figure 1: Molecule 3CD4 and its W matrix.

ilies and eventuall3 help in protein homology detection. Moreover, recognizing

the domain structures of a novel protein from its sequence will also improve

structural predicti_,n by threading. Because of such overwhelming importance

of domains in stru=tural classification as well as functional understanding of

proteins, several d_ tabases (PFAM 11, CATH 12, SCOP 13, DALI1,14) maintain

lists of domains of ;tll the proteins of the Protein Data-bank (PDB)15,16, which

is the largest datat,m_e of protein structures.

As the PDB database keeps growing exponentially, keeping the domain

databases up-to-d; te turns out to be a challenging task. Initially, most of

those databases w :,re maintained manually with help from human experts.

Lack of high-quality automated tools made the process slow and prone to

errors. Although _ome automated algorithms have been proposed in recent

years 1,7,s,ls,27,2s,s_, t,hey are still not very efficient 17. After conducting an

extensive compari,_ m of all leading algorithms in 1998, Jones found that they

worked correctly fir only 65-75 percent of cases 17. Moreover, the algorithms

in her study all agreed only for 55 percent of the test-cases. Better techniques

were proposed in tt e following years 7'1s, but the problem of automated protein

decomposition is f_ r from solved.

Search for effic ent domain decomposition techniques has been active since

the 1970s 19,20,21,2:r 2s,24 but the early efforts were inconclusive due to lack of



analyzed protein _t;ructures. The methods tried in the early years included

analysis of Ca-C '_ distance-maps 20,21,22, minimum packing density of C a

atoms 19, compari_g interface area between two chains 24 estimating maxi-

mum buried surfa, e _rea 23, etc. Attempts were also made to predict domains

solely from the seql _cnce data 25'2s. The problem of domain decomposition from

structural data re,'eived renewed attention in recent years due to exponential

growth in the size :)f PDB over the last decade 15,16. Sophisticated algorithms

were suggested, sortie based on refinement of older ideas and some others using

completely new c_.ncepts. These recent algorithms tried to obtain domains

using inter-residue contacts s, minimization of chain fragmentation 2r, search

for presence of hyd rophobic cores 2s,29, inter-domain dynamics 1,30, dendogram

based on distance maps 27 multi-state partitioning using an Ising chain type

model is and a graph-theory based network-flow algorithm 7

In this paper, we use a powerful, normalized-cut based approach to par-

tition proteins int _ domains. It is a graph-theory based method that has

been quite succes._fifl for image-partitioning applications. In the biological

field, Xing et. al. ,q_plied a similar technique for clustering DNA-micro-array
data 34, but to the best of our knowledge, noone has applied it to the domain

decomposition prc_blem yet. A computer implementation of our algorithm,
tried on standard lest-set of 55 proteins from the literature 17, shows 84% rate

of success, higher than most other existing algorithms 7,1_. Among the 30

single-domain proteins in the test-set, our method correctly identifies all but
two. For the 20 two domain proteins, it achieves 80 percent rate of success.

This success rate improves to 100 percent if the program knows beforehand

that there are only two domains in the protein and then tries to find out the lo-

cations of these do,nains. For multi-domain proteins, the success rate is poorer

but we also note tlat the test-set itself is very small. Only 5 out of 55 proteins

in Jones' test-set tad more than two domains. Therefore the results may be
inconclusive in thi: case.

Our method hts several other advantages. We find that even for proteins

where our method gives incorrect results, the cut-value falls within a narrow

range out of all p, ssible values. This can be very helpful for semi-automatic
identification of do_ nains where human assistance can be taken only for proteins

where the cut vab,_es fall within the narrow range. In addition, our method

needs very few adjustable parameters and runs in linear time with respect to

the size of protein. Also the implementation is cleaner than other graph-theory

based domain-dec_,mposition algorithms, because our method does not need
to add unphysical _ource and sink nodes z
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Fil ure 2: Flow Chart showing steps in the algorithm.

2 Methods

In this section, w_ explain our algorithm for obtaining domains of a protein

from its structure i see Fig. [2]). For a given protein, we start with its structure

downloaded from t he PDB database and represent it as a weighted, undirected

graph, where we c,,nsider the C_ atoms of the protein as vertices of the graph.

Edge-weight wij b ',tween any pair of vertices (i, j) is computed using the fol-

lowing equation:

fij exp[--(dq-d) 1 + flij (1)
= do J

wij = fq iffij < 1

= 1 iff_j > 1. (2)



In Eq. [2], dij is th_ distance between C a atoms of residues i and j. do, (t are

constant paramete s. _ij takes only two values - constant positive parameter
or 0, depending m whether residues i and j belong to the same beta-sheet

or not.

For the eompl, te protein, edge-weights wij can be represented by a sym-

metric matrix W. i'hysically, elements of the matrix W represent the contacts

between different r_sidues of the protein. Larger values of wij close to 1 cor-

respond to closely ocated residues i and j of the protein. On the other hand,

a small value of w,/ implies that the residues i and j are far apart. The par-

ticular functional f,_rm for wij given by Eq. [2] turns out to be not important
for our partitionin_ method. We can choose other functional forms as well. As

long as the terms ia IV represent how strongly the amino acids are connected,

with higher value for stronger connection, our partitioning algorithm would

work. Therefore, the W matrix can be chosen to be as simple as 1(0) based

on whether distan, e between Ca atoms of two residues are less than(greater

than) a certain cu_ off value s or based on some very sophisticated approach z

Once we repre_ ent the protein as a graph as described above, our problem

of identification of domains translates into identifying the connected compo-

nents of the graph that are weakly connected to each other. Efficient graph-

theoretic aigorithn s exist to solve this problem. Among them, we choose the

one that partition:; the graph using the notion of a normalized cut. It is a

clustering algorithm used routinely in the image-partitioning field 33. In the

graph-theoretic la_ guage, our problem can be stated as follows: we seek to

partition the vertices V of a weighted, undirected graph G(V, W) into two dis-

joint sets 1/1 and V._. where the contact is large between the vertices of the same

set and small bet_ een vertices of different sets. Intuitively, a good partition

(V1, V2) of the gr_ph (V) should minimize the sum of the weights for edges

connecting two sul groups. Mathematically, we need to minimize the sum

= (3)
ieV_ jEV2

to get the best pa_ tifion. Unfortunately, such an approach is prone to result

in unbalanced partitions. We can check easily that a partition with only one

vertex in one subgl oup (V1) and the rest of the vertices in other subgroup (172)

may give very low sum in Eq. [3], but that is not the optimum solution that

we are looking for. Therefore the function in Eq. [3] needs to be normalized to
get the correct an._wer.

There are mm 3' possible ways to normalize the function in Eq. [3]. Shi
and Malik studied many such alternatives 33 and found that minimization of



thefunction

_t(v_, ½) cut(V1,½)
2_ r_Lt(V1,½) = assoc(V1, V) + assoc(½, V) ' (4)

gives the optimun partition of the graph. In Eq. [4] assoc(Vm, V) is defined
as

assoc(Vm,V) = wij (5)
iEV._ jEV

It can be shown tt at Ncut has a maximum range of (0, 2).

In order to fi_ d out the best partition of the vertices of the graph, one

obvious approach would be to go over all possible partitions of the set V,

compute Ncut fol each partition using Eq. [4] and then pick the partition

that gives lowest V,mt. However, such an approach is NP-complete 33 and

therefore not prac _ically feasible for large proteins. However, it is possible to

get an approximat _solution for the partitioning problem in the following way.

We consider the tl e generalized eigenvalue problem:

(D - W)v = ,_Dv, (6)

where W is the edt,_-weight matrix of the graph and D is a diagonal matrix with
each element as a _'um of the rows of W. After solving the eigenvalue problem,

we obtain the eig_,uvector corresponding to the second smallest eigenvalue of

Eq. [6J. It is prove, t 33 that an approximate solution for the optimum partition

of the graph is giv ',It by considering the positive and negative elements of the
chosen eigenvectot as two subsets. Moreover, the eigenvector for the second

smallest eigenvalu,, of Eq. [6] can be computed in O(N) time making such an
approach computationally very efficient.

The mathema ical derivation of the eigenvector-based procedure is given

in Ref. ff3]. Instea,1 of reproducing it here, we attempt to physically justify it

by showing analog# to another problem. In quantum mechanics, we describe

the eigenstates of tile hydrogen atom in terms of s, p and d orbitals, all of which

have different shat)es. The s-state is spherical with no nodes, and the p-state is
dumbbell-shaped _'ith one node. On the other hand, the s-state is the lowest

energy state and t _e p-state state has the second smallest eigen-energy. Since

energy is an eigen,'alue of Schrodinger's equation, we see that the eigenvector

corresponding to t_e second smallest eigenvalue attempts to partition space in

two distinct lobes. Our procedure here is analogous.

Once we iden, ify the optimum partition of the protein using the above-

mentioned proced_r_, we need to decide whether to accept the cut or reject

it. There are ma _y single-domained proteins which need not be split into



twodomains.Th, decisionprocessis conductedby comparingtheobtained
smallestNcut valu_ with a predetermined parameter cutoff. If Ncut is higher

than cutoff, the c: it is rejected and the protein is concluded to be single-
domained. On the _ther hand, if Ncut is lower than cutoff, the cut is accepted.

Each segment is omsidered to be a domain of the protein and subsequently
checked for the po,,:sibility of further subdivisions by reapplying the algorithm

on the individual s_gments.

The algorithm described above is generally applicable to any partitioning

problem. For the _pecific case of protein domain-decomposition, some addi-
tional modificatio_ s need to be made. Following Richardson's broad guide-

lines 6 reflecting a ,'ommonly accepted viewpoint on the definition of domains,

we do not accept t,rotein segments less than 40 residues long as domains and

therefore do not attempt to cut proteins less than 80 residues long. Moreover,

to avoid fragment_ tion, if our algorithm predicts parts of domains which are

less than 20 residues long, we insert such short segments back into the other

part of the chain _ a post-processing step.

Additional st(_t)s are taken to make the algorithm numerically efficient.

Firstly, we truncate small terms of W to zero. When the distance between

two residues is ab, ve 25,;t, wij is truncated to zero. This gives us a sparse W

matrix improving _peed at no performance sacrifice. For such sparse W, the

eigenvalues and ei_;envectors in Eq. [6] can be computed in O(N) steps using

the Lanczos algoril hm, an approximate, recursive method. In comparison, the
normal time for c;dculation of eigenvalues is O(N3). Moreover, to improve

the approximate p _r_itioning algorithm, we partition the graph not solely on

values of the eigen,'e,:tor above and below zero, but also take few more cutoff

points near zero t(: see whether the Ncut value improves. Such a procedure is

originally suggesW t m Ref. _3] and we find it to improve the quality of our
results.

3 Estimation of Model Parameters

Four important pa-ameters ( d, do and _ and cutoff) need to be estimated for

optimum perform_nce of our algorithm. For calibration of these parameters,
we choose a method similar to Ref. [r]. We consider a calibration set of 206 pro-
teins 35 for which _:omains are already known and available in the literature s

47 of them are two-domained proteins the remaining 159 are single-domained.

We apply our algo.ithm to all these proteins with different values of parame-

ters d, do, _ and c.Lt(_ff and compare results with known solutions. The values

of the parameters ibr which the domains of most proteins are correctly identi-

fied are chosen as ._tandard parameters. Based on this analysis, we found that

7



d= 10.33,do = 2, _ = .01 and cutoff=-.26 give the best results.

With the chosen form of the W matrix and associated parameters, we

discuss here the implications of varying the parameters. We find that if d is

changed to larger :alues, w_j becomes 1 for many residue-pairs. Therefore, the

resolution of the method goes down and Ncut gets larger. Resolution improves

for smaller d. H_,wever, if d is too small, all off-diagonal elements become

very small. So th,t is not acceptable either. Some middle-value of d is more

desirable, and the method optimizes for d = 10.33_. On the other hand, do is

a scaling paramet,_r. It effectively scales up the high-resolution numbers that
were obtained wit i low d.

4 Results and Discussion

We illustrate the _eneral procedure discussed in section [2] with the example
of T-Cell Surface Glycoprotein (PDB code: 3CD4). This protein has two

domains clearly id _,ntifiable in Fig. [l(a)]. We represent the protein as a graph
and compute the ._.djacency matrix W. The W matrix is shown in Fig. [1] as

an image plot. Ba,ed on the eigenvector corresponding to the second smallest

eigenvalue in Eq. [4], we partition the protein into two groups of residues (1,97)

and (98,178). The value of Ncut for this partition is 0.17 which is much smaller
than cutoff paran_eter 0.26. Therefore the cut is accepted and two segments

are chosen as two domains of the protein. Attempts at further partitioning

of the individual _egments produce Ncut values larger than .26 and therefore

such subdivisions are rejected. Hence, our algorithm gives two domains for

the protein, closely matching expert opinion from the literature [(1,98) and

(99,178)].

To compare the overall quality of our method with other methods in the

literature, we try _t on the standard set of 55 proteins from the literature 17

The set of protein n_:ludes 30 single-domain proteins_, 20 two-domain proteins

b, two three-doma n proteins _ and three four-domain proteins d. Domains for

all these proteins are available from the literature s. Structures of some of the

proteins in the PDB database have been corrected and saved under new names
in PDB since the original paper came out in 1998. Therefore, we updated

aone-domain: 2aa_, 2ace, lbbhA, lbbpA, lbrd, lfxiA, lgky, 2gmfA, lgmpA, lgox, lofv,
lpyp, lrbp, lrcb, lr_eA, lsnc, ltie, ltlk, lula, lbksA, 2azaA, 2ccyA, 2rn2, 2sty, 2tmvA,
3chy, 3cla, 3dfrA, 4bl uA, 5p21

btwo-domain: lez, _, [fnb, lgpb, llap, lpfkA, lppn, lrhd, lsgt, lvsg, lbksB, 2cyp, 2had,
3cd4, lg6nA, 3pgk, 41,,cr,5fbp, 8adh, 8atcA, 8atcB

Cthree-domain: ]p_h 3grs
dfour-domain: lat_lA, 3pgmA, 8acn



Table 1: Domain deJ omposition of 25 multi-domain proteins of the standard comparison

set are shown here. Column 'Expert Opinion in Lit.' shows the domains identified by

experts in the literat_,re. Column 'Normalized Cut' shows results from our algorithm. For

the remaining 30 prot _dns which are single-domained, three proteins 2ACE and 2TMVP are

ide_t!ified incorrectly as two-domained by our algorithm.

Protein ExpeE t Opinion in Lit.

2 domains:

1EZM

1FNB

1GPB

1LAP

1PFKA

1PPN

1RHD

1SGT

1VSGA

1BKSB

2CYP

2HAD

3CD4

1G6NA

3PGK

4GCR

5FBP

8ADH

8ATCA

8ATCB

3 domains:

IPHH

3GRS

4 domains:

1ATNA

3PMGA

8ACN

1-13.1), 135-298)

19-U l), (162-314)

19-4._9), (490-841)

1-1517), 171-484)
0-13_, ,251-301),

139-250,302-319)

1-10, ( .208), (21-111,209-212)

1-15_), 159-293)

22-1:23, 134-245), (129-233)

1-29. 251), (42-75, 266-362)

9-52, 204), (53-85, 205-393)

3-1,17, 76-294), (164-265)

1-15,%, ,3-310), (156-229)

(1-98) _)-178)

(1-12!)), 139-208)

(1-185, ,3-415), (200-392)

(1-83) J,-174)

(6-201), (202-335)

(1-175, 9-374), (176-318)

(1-137. .8-310), (144-283)

(8-971 (31-152)

(1-155), 176-290), (291-394)

(18-157, !94-364), (158-293),

(365-,178p

(1-32, 144, 338-372), (33-

69),(I 180, 270-337),(181-

269)
(1-188). [92-315),(325-403),

(408-SBlp

(2-200),(Z01-317), (320-513),

(538-754b

Normalized Cut Accuracy

(1-146,170-197),

(147-169,198-298)
(19-153), (154-314)

3 dom_ns

(1-158), (159-484)

(0-142,255-319), (143-251)

(1-212)
(1-157), (158-293)

(16-245)

(1-33,86-255),(34-85,256-362)

(3-53,87-204), (54-86,205-394)

(2-144, 266-294), (145-265)
(1-310)

(1-97), (98-178)

(7-128), (129-204)

(1-195,390-415), (196-389)

(1-81), (82-173)

(6-199), (200,334)

(1-177, 318-374), (178-317)

(1-140,289-309), (141-288)

(8-98), (99-153)

(1-69,100-180,269-341)

70-99,181-268,342-394)
18-60,108-159,291-364), (61-

107,160-220,242-290), (221-

241_365-478)

(1-33,69-136,339-

372), (34-68,186-257), (137-

185,258-338)

(1-193), (194-419), (420-561)

(2-67,151-208,231-312), (68-

159,510-530), (209-230,313-
508),(531-754)

87%

98%

wrong
100%

98%

wrong
100%

wrong
100%

100%

99%

wrong
100%

100%

lOO%

99%

lOO%

99%

100%

100%

wrong

87%

95%

wrong

wrong



proteins laak by :la_Lk, lace by 2ace, lgmfA by 2gmfA, lwsy by lbks, lfnr by

lfnb, 2pmg by 3phi: and 3gap by lg6n to reflect this change.

The results oJ:our comparison are shown in table[l]. Using the definition of

correctness of Isb_m s'7, our method gives 84 percent accuracy. We have nine

incorrect results _ proteins with PDB codes 2ace, 2tmvP, lgpb, lppn, lsgt,

2had, lphh, 3pm_ A and 8acn.

By analyzing r,he Ncut numbers for the proteins, for which our algorithm

failed we note tha; they resulted in Ncut values with a much smaller subrange

out of maximum _ange of (0 - 2). This allows us to suggest a better method

for protein domabt decomposition. We can consider all the proteins and then
for the ones whet,' the cut value is outside the subrange, we can surely say that

the cut can be ac,:epted. On the other hand, for the proteins where the cut-

value is within a small subrange 'gray-area', we may discuss with an expert to

accept or reject th _cut. The whole range (0, 2) of minimum Ncut values can be

divided into (i) su:e cut (0- .20), gray region (.20 - .30) and sure not a domain

(.31 - 2). This will greatly reduce the burden on human experts maintaining
the PDB database, because they can concentrate on a smaller group of proteins

rather than all th, proteins. We note that using this strategy, we can correctly

identify all the p_oteins in Jones list except three. These three are proteins

with PDB codes ]sgt, 2had and latn, some which have history of difficulty of
identification eveJ_ by human experts is

5 Conclusion

In this paper, we _lse a powerful, normalized-cut based approach to partition

proteins into dom.dns. This graph-theory based approach, borrowed from the

image-partitionim' field, shows a good rate of success when applied to the

protein domain d,,composition problem. A computer implementation of our
algorithm, tried or a commonly used standard test-set of 55 proteins 17, obtains

84 percent rate of _uccess, higher than most other existing algorithms 17,7. Also

this method needs w_,ry few adjustable parameters and runs in linear time with

respect to the siz,: of protein. Moreover, we find that even for proteins where

our method gives incorrect results, the cut-value falls within a narrow range

out of all possible values. Therefore, our method will be useful for automatic
domain databases as well as semi-automatic ones where the aid of a human

expert is taken fo) difficult proteins.

10
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